GRAPH TRAVERSAL
ALGORITHM: BREADTH FIRST
SEARCH (BFS)

AAAAAAAAAAAAAAAAA

WHAT IS BREADTH FIRST SEARCH (BFS)?

Starts with the source node and then traverse the
adjacent /neighbor nodes.

Then traverse the neighbors of neighbors.

That is explore each neighbor of the current node before exploring the children of
the neighbors

That it traverses nodes level by level (or in order their breadth).
What do we use to traverse level by level order?

Queue

First traverses all the nodes which is in one edge distance, then
traverses the nodes which have two edge distances from the nodes
and so on.

When processing a node, marks it so that no nodes
gets processed more than once.

BFS algorithm. ~~ R
o Ly={s)}.
+ L, = all neighbors of L,.
+ L,= all nodes that do not belong to L, or L,, and that have an edge to a
node in L.
+ L., = all nodes that do not belong to an earlier layer, and that have an
edge to a node in L.

Image Source: KT

RANIT DEBNATH AKASH 2

/(12)

RANIT DEBNATH AKASH

3

OEESrEET AREES

RANIT DEBNATH AKASH 4

/(12)

RANIT DEBNATH AKASH 5

(12)

RANIT DEBNATH AKASH 6

RANIT DEBNATH AKASH 7

RANIT DEBNATH AKASH 8

RANIT DEBNATH AKASH

9

RANIT DEBNATH AKASH

10

RANIT DEBNATH AKASH

13

RANIT DEBNATH AKASH

12

PSEUDO CODE

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue,

anhd mark them as visited.

Image Source: RS, KW

RANIT DEBNATH AKASH 13

PSEUDO CODE

1
2
3
4

5
Li]
T
8

BFS

Input: graph ¢ = (V, F) in adjacency-list
representation, and a vertex s € V.

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

mark s as explored, all other vertices as unexplored
(2 := a queue data structure, initialized with s
while () is not empty do
remove the vertex from the front of), call it v
for each edge (v, w) in v's adjacency list do
if w is unexplored then
mark w as explored

add w to the end of ()

Image Source: T. RoughGarden

Complexity: O (V + E)

For adjacency List

Complexity: 0 (V?)
For adjacency matrix

RANIT DEBNATH AKASH 14

PSEUDO CODE

procedure bfs (G, s)

Input: Graph G =(V,FE), directed or undirected; vertex sV
Qutput: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all ueV:
dist(u) = oo

dist(s) =10
@ = [s] (queue containing just s)
while () is not empty:

u=eject(@)
for all edges (u,v) € E:
if dist(v) =o00:

inject(Q),v)

dist(v)=dist(u)+1

Image Source: DPV

RANIT DEBNATH AKASH 15

PSEUDO CODE

BFS(G. s)

1 for each vertex u € G.V — {5}
2 u.color = WHITE

3 u.d = oo

4 u.7T = NIL

5 s.color = GRAY

6 5s.d=0

7 s.m = NIL

8 0=40

9 ENQUEUE(Q, s)

10 while Q # @

I u = DEQUEUE(Q) Image Source: CLRS
12 for each v € G.Adj[u]

13 if v.color == WHITE

14 v.color = GRAY

15 v.d = u.d +1

16 V.IT = U

17 ENQUEUE(Q.v)

18 u.color = BLACK

Figure 22.3 illustrates the progress of BFS on a sample graph.
RANITDEBNATH AKASH 16

(a)

(c)

(g)

(i)

r 5 I [

D0 (=r—=)
a2

¥) I u
v W X }
I) I 1)
o
v W X }

5
0
rlt|x
1 2 2
x|v|u
2 2 3
iy
3 3
@

(b)

(d)

()

(h)

W

i

0

wl|r
1 1
t|x|wv
2 2 2
viu|y
2 3 3
}F

3

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u.d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10-18. Vertex distances appear below vertices

in the queue.

Image Source: CLRS

RANIT DEBNATH AKASH

17

» STL Priority Queue (Heap)

N EXT TO P I (? » Single Source Shortest Path (SSSP) Problem

» Dijkstra’s Algorithm (Greedy)

RANIT DEBNATH AKASH 18

